Incorporation of [U-¹³C]glycerol defines plausible early steps for the biosynthesis of methylenomycin A in *Streptomyces coelicolor* A3(2)[†]

Gregory L. Challis*‡ and Keith F. Chater

Department of Genetics, John Innes Centre, Colney Lane, Norwich, UK NR4 7UH. E-mail: greg.challis@bbsrc.ac.uk; Fax: +44 (0)1603 450045; Tel: +44 (0)1603 450000

Received (in Cambridge, UK) 19th February 2001, Accepted 4th April 2001 First published as an Advance Article on the web 2nd May 2001

Incorporation of $[U^{-13}C]$ glycerol into the linear plasmidencoded secondary metabolite methylenomycin A, both intact and indirectly *via* metabolism to acetyl CoA, was observed in *Streptomyces coelicolor* suggesting plausible early biosynthetic steps for this unusual antibiotic.

Methylenomycins A and B, 1 and 2 respectively,¹ are the most well studied members of a small group of cyclopentanone antibiotics produced by various *Streptomyces* spp. Other members of this group include xanthocidin,² vertimycin,³

pentenomycin,⁴ and sarkomycin,⁵ which is an antitumour agent that has been used clinically in Japan. The *mmy* cluster of genes encoding methylenomycin biosynthesis and its regulation, as well as self-resistance, is localised on a large linear plasmid that is not essential for growth in *Streptomyces coelicolor* A3(2) and a large circular plasmid in *Streptomyces violaceoruber*.⁵ Recently, the entire *mmy* cluster of *S. coelicolor* has been sequenced.⁶ As a first step towards understanding how the enzymes encoded by this cluster assemble **1** and **2** we have reinvestigated the primary metabolic origins of these antibiotics.

Previous investigations showed that radiolabelled desepoxy-4,5-didehydro methylenomycin A **3**, which is also a metabolite of *S. coelicolor*, is incorporated into **1**.⁷ Thus epoxidation of **3** appears to be the final step in the biosynthesis of **1**, whereas **2** probably derives from spontaneous decarboxylation of **3**. Additional experiments using radiolabelled precursors showed significant incorporation of acetate, pyruvate, succinate, aspartate and glycine into the carbon atoms of **1**.⁸ Intact incorporation of acetate into C-4, C-8 and C-1, C-6 of **1** was deduced by ¹³C NMR analysis of a sample isolated from a culture of *S. coelicolor* fed with [1,2-¹³C₂]acetate (Scheme 1).⁸

To further investigate the primary metabolic origins of the carbon atoms in 1, the incorporation of $[U_{-13}C]$ glycerol was examined.§ Surprisingly, the results of this experiment were

inconsistent with the previously reported incorporation of $[1,2^{-13}C]$ acetate into C-4, C-8 of **1**. The original interpretation of the acetate incorporation experiment depended on the assignment of the signal at 13.8 ppm in the ¹³C NMR spectrum of **1** to the C-5 methyl substituent. This assignment was made on the basis of an apparent ⁴*J* coupling between the C-5 methyl group and the hydrogen atom attached to C-1 in the ¹H NMR spectrum, in conjunction with heteronuclear decoupling experiments.⁸ To resolve the conflict we measured the HMBC spectrum of **1**, which unambiguously showed that the signals at 13.8 and 8.2 ppm in the ¹³C NMR spectrum are due to the C-4 and C-5 methyl groups, respectively (Fig. 1).

www.rsc.org/chemcomm

municat

Fig. 1 Summary of HMBC correlations observed for 1.

These assignments forced us to conclude that $[1,2^{-13}C]$ acetate is incorporated intact into C-5, C-9 and C-1, C-6, rather than C-4, C-8 and C-1, C-6 as previously reported.⁸ Consistent with this reinterpretation, the ¹³C NMR spectrum of **1** isolated from the glycerol feeding experiment showed indirect incorporation of $[U^{-13}C]$ glycerol into C-5, C-9 and C-1, C-6 presumably by catabolism *via* pyruvate to $[1,2^{-13}C]$ acetyl CoA. In addition, double doublets centred on the signals for C-3 and C-8 were also observed in the spectrum, demonstrating that these carbons are coupled (${}^{2}J_{C-C} = 3.4$ Hz; Fig. 2), which is consistent with intact incorporation of $[U^{-13}C]$ glycerol into C-3, C-4 and C-8. Such intact incorporation of glycerol is relatively unusual and has only been reported for four other microbial secondary metabolites.⁹ The results of the glycerol incorporation experiment are summarised in Scheme 2.

Scheme 2

On the basis of these results, we propose a pathway for the biosynthesis of **1** in *S. coelicolor* involving nucleophilic addition of C-2 of lactate (X = H, Y = OH) or of a glycolytic intermediate such as glyceraldehyde-3-phosphate (X = OPO_3^{2-} , Y = H) to C-3 of acetoacetyl ACP. This pathway, which is mechanistically distinct from those proposed for the incorporation of glycerol into other metabolites,⁹ is consistent with the presence of the *mmyA* and *mmyC* genes in the methylenomycin cluster, which encode homologues of an ACP and ketoacyl synthase III (KAS III), respectively.⁶ However, reduction of acetoacetyl ACP to 3-hydroxybutyryl ACP followed by nucleophilic displacement of the hydroxy group with C-2 of lactate or glyceraldehyde-3-phosphate cannot be

[†] Electronic supplementary information (ESI) available: HMBC, ¹H and ¹³C NMR spectra of methylenomycin A. See http://www.rsc.org/suppdata/ cc/b1/b101615f/

[‡] Current address: Department of Chemistry, University of Warwick, Coventry, UK CV4 7AL. E-mail: g.l.challis@warwick.ac.uk; Fax +44 (0)2476 524112; Tel: +44 (0)2476 523653.

Fig. 2 Sections of the ¹³C NMR spectrum of **1** isolated from cultures of *S. coelicolor* fed with $[U_{-13}C]$ glycerol showing double doublets flanking the C-3 (left; 196.4 ppm) and C-8 (right; 8.2 ppm) resonances. While the larger splitting in each is due to ¹*J* coupling between C-3 or C-8 and C-4, the smaller splitting of 3.4 Hz in both is due to ²*J* coupling between C-3 and C-8, consistent with intact incorporation of $[U_{-13}C]$ glycerol into C-3, C-4 and C-8 of **1**.

ruled out.¹⁰ In either case, several alternating dehydrations and enoyl reductions of the product would yield the common intermediate **4** (Scheme 3).

Conversion of **4** to the known biosynthetic intermediate **3** would require condensation with unknown precursors of C-2 and C-7 and hydrolysis of the thioester linkage to the ACP MmyA. Previous experiments eliminated the possibility that C-2 and C-7 are derived either from acteate as an intact two-carbon unit or from two *S*-adenosylmethionine methyl groups.⁸ However, radioactivity from [2-¹⁴C]glycine, has been shown to incorporate into **1** and this amino acid could therefore act as either an intact two-carbon precursor of C-2, C-7 or as a one-carbon donor for C-2 and C-7 *via* metabolism to methylene tetrahydrofolate.⁸ To test this hypothesis we examined the incorporation of $[1,2^{-13}C_2]glycine into$ **1**. To our surprise, there was no incorporation of ¹³C into C-2 or C-7, instead

approximately equal labelling of individual molecules at either C-5 and C-9, or C-1 and C-6 was observed. This result can be explained by transfer of 13 C-2 from one molecule of $[1,2-{}^{13}C_2]$ glycine to another by serine hydroxymethyltransferase to give $[U-{}^{13}C]$ serine, which is then metabolised to $[1,2-{}^{13}C_2]$ acetyl CoA *via* pyruvate and incorporated into **1**. Thus, we have ruled out the derivation of C-2 and C-7 from intact glycine or from two one-carbon units donated by methylene tetrahydrofolate. Further experiments will be required to identify the cryptic two-carbon precursor of C-2 and C-7.

In conclusion, intact and indirect incorporation of [U- ^{13}C]glycerol has elucidated the metabolic origins of the majority of carbon atoms in **1** and has defined plausible early steps for the biosynthesis of this metabolite in *S. coelicolor* A3(2).

Financial support by the Wellcome Trust (grant no. 053086) is gratefully acknowledged. We thank A. C. Foster and Professor S. V. Ley (University of Cambridge) for recording NMR spectra.

Notes and references

§ A solution of 50 mg of labelled glycerol in water was added to a 3-day-old 500 ml culture of *S. coelicolor* U9 grown in complete medium at 28 °C from spores as in ref. 8. After 24 h further incubation, the culture was filtered, and the filtrate was adjusted to pH 2 with 6 M HCl and extracted with an equal volume of ethyl acetate. **1** was purified from the organic extract by flash column chromatography (silica, AcOH–PhMe 1:9) and analysed by ¹³C NMR spectroscopy at 100 MHz.

- T. Haneishi, N. Kitahara, Y. Takiguichi, M. Arai and S. Sugawara, J. Antibiot., 1974, 27, 386 and references therein; L. F. Wright and D. A. Hopwood, J. Gen. Microbiol., 1976, 95, 96.
- 2 T. Sakurai, Y. Iiamura and K. Asahi, Agric. Biol. Chem., 1970, 34, 325.
- 3 K. Umino, T. Furumai, N. Matsuzawa, Y. Awataguchi, Y. Ito and T. Okuda, J. Antibiot., 1973, 26, 506.
- 4 H. Umezawa, T. Takeuchi and K. Nitta, J. Antibiot., 1953, 6, 101.
- 5 K. F. Chater and C. J. Bruton, *EMBO J.*, 1985, 4, 1893 and references therein.
- 6 Genbank Accession number: AJ276673.
- 7 U. Hornemann and D. A. Hopwood, Tetrahedron Lett., 1978, 2977.
- 8 U. Hornemann and D. A. Hopwood, in *Antibiotics IV*, ed. J. W. Corcoran, Springer Verlag, Berlin Heidelberg, 1981, pp. 123.
- 9 N. Khaleeli, R. F. Li and C. A. Townsend, J. Am. Chem. Soc., 1999, 121, 9223 and references therein; J. J. Lee, J. P. Lee, P. J. Keller, C. E. Cottrell, C. Chang, H. Zahner and H. G. Floss, J. Antibiot., 1986, 39, 1123; S. Sakuda, A. Higashi, S. Tanaka, T. Nihira and Y. Yamada, J. Am. Chem. Soc., 1992, 114, 663; Y. Sekiyama, H. Araya, K. Hasumi, A. Endo and Y. Fujimoto, Tetrahedron Lett., 1998, 39, 6223.
- 10 Similarly the dehydration of 3-hydroxybutyryl ACP to give crotonyl ACP followed by conjugate nucleophilic addition of C-2 of lactate or glyceraldehyde-3-phosphate can not be ruled out, although it gives the same product.